
IC666: Discrete Stochastic Processes (Spring 2012) 

Assignment 3 (Due: 2 pm, April 23, 2012) 

 

1. Let X be a continuous r.v. X with pdf 
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where k is a constant. 

(a) Determine the value of k and sketch (x)fX   

(b) Find and sketch the corresponding cdf (x)FX  

(c) Find 2).X
4
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2. Let X = N(0; 2σ ). Find 0)X|Var(X and 0)X|E(X >>  

 

3. A Communication Example During our lecture, we looked at a simple point-to-point 

communication example. The task was to transmit messages from one point to another, by using a 

noisy channel. We modeled the problem probabilistically as follows: 

 
 A binary message source generates independent successive messages M1, M2, · · · : each message is a 

discrete random variable that takes the value 1 with probability p and the value 0 with probability 1 − p. 

For a single message, we write the PMF as: 

 A binary symmetric channel acts on an input bit to produce an output bit, by flipping the input with 

“crossover” probability e, or transmitting it correctly with probability 1 − e. 



 
For a single transmission, this channel can be modeled using a conditional PMF pY |X (y|x), where X and Y are 

random variables for the channel input and output bits respectively. We then have: 
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Next, we make a series of assumptions that make the above single-transmission description enough to 

describe multiple transmissions as well. We say that transmissions are: 

(a) Independent: Outputs are conditionally independent from each other, given the inputs. 

(b) Memoryless: Only the current input affects the current output. 

(c) Time-invariant: We always have the same conditional PMF. 

We write: 

pY1,Y2,···|X1,X2,···(y1, y2, · · · |x1, x2, · · · ) 
(a) 

= pY1|X1,X2,···(y1|x1, x2, · · · ) · pY2|X1,X2,···(y2|x1, x2, · · · ) · · ·  
(b) 

= pY1|X1(y1|x1) · pY2|X2(y2|x2) · · ·  
(c) 

= pY |X(y1|x1) · pY |X(y2|x2) · · · 

Any transmission scheme through this channel must transform messages into channel inputs (encoding), and 

transform channel outputs into estimates of the transmitted messages (decoding). 

For this problem, we will encode each message separately (more elaborate schemes look at blocks and trails 

of messages), and generate a sequence of n channel input bits. The encoder is therefore a map: 

{0, 1} → {0, 1}
M →  X1, X2, · · · ,Xn 

n 

The decoder is simply a reverse map: 
{0, 1}n

Y1, Y2, · · · , Yn  →
 → {0, 1} 

M̂   

Note that we use the “hat” notation to indicate an estimated quantity, but bare in mind that M and M̂  are 
two distinct random variables. The complete communication problem looks as follows: 
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Finally, to measure the performance of any transmission scheme, we look at the probability of error, i.e. the 
event that the estimated message is different from the transmitted message: 
 

M)MP(P(error) ≠= ˆ  
(a) No encoding: 

The simplest encoder sends each message bit directly through the channel, i.e. X1 = X =M. Then, a 

reasonable decoder is to use the output channel directly as message estimate: M̂ = Y1 = Y . What is the 
probability of error in this case? 

 
(b) Repetition code with majority decoding rule: 

The next thing we attempt to do is to send each message n > 1 times through this channel. On the decoder 
end, we do what seems natural: decide 0 when there are more 0s than 1s, and decide 1 otherwise. This is a 

“majority” decoding rule, and we can write it as follows (making the dependence of M̂  on the channel 
outputs explicit): 
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Analytical results: 
i. Find an expression of the probability of error as a function of e, p and n. [Hint: First use the total probability rule 

to divide the problem into solving P(error|M = 0) and P(error|M = 1), as we did in the lecture.] 
ii. Choose p = 0.5, e = 0.3 and use your favorite computational method to make a plot of P(error) versus n, for n = 

1, · · · , 15. 
iii. Is majority decoding rule optimal (lowest P(error)) for all p?  

[Hint: What is the best decoding rule if p = 0?]. 
 

Simulation: 
i. Set p = 0.5, e = 0.3, generate a message of length 20. 
ii. Encode your message with n = 3. 
iii. Transmit the message, decode it, and write down the value of the message error rate (the ratio of bits in error, over 

the total number of message bits). 
iv. Repeat Step 3 several times, and average out all the message error rates that you obtain. How does this compare to 

your analytical expression of P(error) for this value of n? 
v. Repeat Steps 3 and 4 for n = 5, 10, 15, and compare the respective average message error rates to the 

corresponding analytical P(error). 
 
 

(c) Repetition code with maximum a posteriori (MAP) rule: 
In Part b, majority decoding was chosen almost arbitrarily, and we have alluded to the fact that it might not 
be the best choice in some cases. Here, we claim that the probability of error is in fact minimized when the 
decoding rule is as follows: 
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This decoding rule is called “maximum a posterior” or MAP, because it chooses the value of M which 
maximizes the posterior probability of M given the channel output bits Y1 = y1, · · · , Yn = yn

i. Denote by N0 the number of 0s in y

 (another term for 
Bayes’ rule). 

1, · · · , yn, and by N1 the number of 1s. Express the MAP rule as an 
inequality in terms of N0 and N1, and as a function of e and p. [Hint: Use Bayes’ rule to decompose the posterior 
probability. Note that p Y1, · · · , Yn  (y1, · · · , yn

ii. Show that the MAP rule reduces to the majority rule if p = 0.5. 
) is a constant during one decoding.] 

iii. Give an interpretation of how, for p ≠ 0.5, the MAP rule deviates from the majority rule. [Hint: Use the 



simplification steps of your previous answer, but keep p arbitrary.] 
iv. (Optional) Prove that the MAP rule minimizes P(error). 

 
 
4. Let X be uniformly distributed in the unit interval [0,1]. Consider the random variable Y=g(X), 

where  
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Find the expected value of Y by first deriving its PMF. Verify the results using the expected value 

rule. 

 

5. Alvin throws darts at a circular target of radius r and is equally likely to hit any point in the target. 

Let X be the distance of Alvin’s hit from the center.  

(a) Find the PDF, the mean, and the variance of X.  

(b) The target has an inner circle of radius t. If X≤ t, Alvin’s gets a score of S=1/X. Otherwise his 

score is S=0. Find the CDF of S. Is S a continuous random variable? 

 

6. Let X be a normal random variable with zero mean and standard deviation σ . Use the normal 

tables to compute the probabilities of the events 1,2,3.k for }kX{ }andk{X =≤≥ σσ
 

 

7. An absent-minded professor schedules two student appointments for the same time. The 

appointment durations are independent and exponentially distributed with mean thirty minutes. The 

first student arrives on time, but the second student arrives five minutes late. What is the expected 

value of the time between the arrival of the first student and the departure of the second student? 

 


