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Abstract — In this paper, we apply an anti-windup scheme
for improving the performance of a conventional Proportional-
Integral (PI) controller for Active Queue Management (AQM)
supporting TCP flows. When a PI controller is used for AQM,
the “windup” phenomenon of the integral action can cause per-
formance degradation because the packet drop probability is lim-
ited between 0 and 1. Therefore we model TCP/AQM as a system
with a saturator and apply an anti-windup method to the con-
ventional PI AQM scheme. We compare the performance of the
proposed controller with the conventional PI controller through
ns simulations. The simulation results show that our proposed
control scheme outperforms the conventional PI controller when
the traffic load is varying, which is always the case in the real
network environment.

I. INTRODUCTION

The current TCP congestion control with drop-tail queues has some
problems: First of all, the TCP sources of drop-tail queues reduce
their rates only after detecting packet loss due to queue overflow.
Therefore considerable time may have passed between the packet
drop and its detection. At the same time, a large number of packets
may be dropped as the sources continue to transmit at a rate that the
network cannot support. In addition, packet drop at drop-tail queues
could result in the global synchronization of sources [1].

To alleviate these problems, Random Early Detection (RED)
gateways were proposed for Active Queue Management (AQM)
[2][3]. However, the original RED algorithm also has several short-
comings. First, the parameter tuning remains an inexact science
[4][5][6]. Furthermore, there exist some arguments on the deploy-
ment of RED, especially in the case of small buffers [4]. Many vari-
ants of RED were proposed to resolve these problems [6][7][8][9].
Recently, several researchers have proposed system theoretic ap-
proaches [10][11][12][13][14][15][16]. The authors of [10][11][12]
proposed an optimization-based view of networks and suggested the
Random Early Marking (REM) algorithm, which is actually a PI con-
troller. In [13] and [14], the authors gave a control theoretic analysis
of RED and designed a PI controller which outperformed RED sig-
nificantly. The authors of [15] and [16] focused on stabilizing the
queue and proposed an integral controller for AQM.

In this paper, we model AQM as a system with a saturator because
the packet drop probability is limited between 0 and 1 [17][18]. With
this constraint, the output of the integral controller would increase
and become large if the queue size remains below the target value
over some period. Once this happens, the integral controller cannot
regulate the queue size properly as the queue size changes and this
could result in a significant performance degradation. This kind of
problem is known to control engineers as the “windup” phenomenon
of an integral controller, which exists when a system consists of an
integral cotroller and a saturator at the control input [18][19].

To resolve this problem, we add a saturator to the TCP/AQM
model and apply an anti-windup method to the conventional PI AQM

scheme. We compare the performance of the proposed scheme with
the conventional PI controller through ns simulations. The simulation
results show that our proposed control scheme outperforms the con-
vetional PI controller when the traffic is fluctuating, which is always
the case in the real network environment. Our main contribution in
this paper is as follows:

(i) We consider the limitation of the packet drop probability be-
tween 0 and 1 and introduce an TCP/AQM model with a saturating
actuator. This saturation phenomenon has not been considered earlier
in the literature.

(ii) To compensate the saturation, We apply an anti-windup
scheme to the conventional PI controller. Also we compare the per-
formance of our proposed scheme with the PI AQM through ns sim-
ulations.

The rest of the paper is organized as follows. In section II, we
present the details of the TCP/AQM system with emphasis on the sat-
urating actuator. In Section III we describe the proposed anti-windup
algorithm. In Section IV, we compare the proposed algorithm with
the conventional PI controller via simulation using an ns-2 network
simulator [20]. Finally, we present the conclusion in Section V.

II. FEEDBACK CONTROL OF ACTIVE QUEUE MANAGEMENT

RED is an AQM algorithm, which controls network congestion by
randomly dropping or marking packets with a probability ��. When
TCP sources detect that their packets are dropped or marked, they re-
duce their sending rates, and the queue size of the router decreases.
This process constitutes a closed loop feedback control system as
shown in Figure 1 [15]. The system consists of TCP sources, a router
queue, and a congestion controller. The congestion controller reg-
ulates the queue size of the router by changing the probability ��.
Because the PI controller ensures that the steady state error becomes
zero, it is better than RED for active queue management [14]. Figure
2 depicts the conventional PI controller. The controller input is the
queue size error ��, which is defined as the difference between the
target queue size and the queue size of the router as follows:
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Figure 1: TCP congestion avoidance as a closed-loop feedback
control system
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Figure 2: Conventional PI control
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Figure 3: PI control with the proposed anti-windup compen-
sator

where ���� is the target queue size of the router. The drop probability
is obtained by limiting the controller output within the range of [0,
����] as the following equation:

����� � sat������ (2)

sat��� �

��
�

���� � � ����

� � � �
� otherwise

(3)

where ���� is the maximum drop probability. According to the
drop probability, packets are dropped or marked. When the packets
are dropped or marked, each of the TCP sources adjusts its window
size to reduce its sending rates, and consequently the queue size de-
creases.

A PI controller consists of a proportional and an integral controller
as follows:

���� � ������� � ��

� �

�

���� ��� (4)

where ��, �� are the proportional gain and the integral gain respec-
tively [21]. A PI controller regulates the queue size of the router
properly when it operates around the target queue size. However, real
network traffic load varies rapidly due to the bursty nature, and some-
times can be much lighter than what is required to maintain the target
queue size. If the queue size is smaller than the target queue size
for a certain period of time, then the state of the integral controller
will become a large negative value, and �� will become zero. If this
situation is followed by rapid traffic increase, a buffer overflow will
occur because the state of the integral controller will be negative for a
considerable time. Consequently the performance of the congestion
control degrades significantly.

III. PI CONTROL WITH AN ANTI-WINDUP COMPENSATOR

Here we adopt an anti-windup scheme in [22] [23]. Actually this
scheme is a special case of a more general method, i.e. a dynamic
anti-windup scheme in [24] [25] [26].

First we formulate the state-space representation of the AQM sys-
tem. We use a linearized version of the TCP dynamics in [13]. Here

we use the incoming rate ������ instead of the window size as a sate
variable. Further we ignore the delay in the control input. The TCP
model is as follows:
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. Here �,

� , and �	 are the round-trip time, the number of TCP sessions, and
the link capacity, respectively.

Also we represent the conventional PI controller as follows:
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where � � �, � � �, � � ��, � � ��, and ���� � ���� .

A. Dynamics of the closed-loop system in the absence of the
saturating actuator

From (15) and (16) in [23] we can get the following as dynamics of
the closed-loop TCP/AQM system in the absence of the saturating
actuator. This corresponds to the case when � � � in the Figure 3.
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B. Dynamics of the closed-loop system in the presence of the
saturating actuator

By similar manner, from Figure 3 we get the following as dynamics
of the closed-loop TCP/AQM system in the presence of the saturating
actuator.
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Note that we do not consider the operating modes as in [23]. The
reason is that the upper saturation is not possible in physical sense.
If the drop probability is equal to one, it means that all the incoming
packets will be dropped. Actually in this case the contol input is
infinite, which is not with the model in (5), (6), and (7). This comes
from the fact that the model is valid only when the drop probability
is small enough. The physical meaning of the lower saturation is that
it is impossible at the router to generate packets when the incoming
traffic is less than the link capacity. Consequently we only need to
consider the lower saturation case.



Now we need the following assumptions for determining the value
of  .
(A1) The plant is open-loop stable.
(A2) The controller provides acceptable nominal performance in the
absence of the saturating actuator.
(A3) ����� � ������� is nonsingular.

We can easily check that assumption (A1) is satisfied from (5).
Assumption (A2) is also satisfied if we assume that we have designed
a PI controller by following the guideline in [14]. Also we can check
Assumption (A3) easily from (5) and (6).

Now let �	��� 	���


� �


 denote the equilibirum point of (11) and
�	����� � �	������� �
 �
 denote the virtual equilibrium point of (13). The
design objective is to choose  such that the distance between these
two equilibrium points is as close as possible. If we let �
��� 
���
� �
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 , then we have the following result.

Theorem 1. If Assumptions (A1)–(A3) are satisfied, the solution
 of
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is uniquely determined by
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Proof. We have the following objective function
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From Theorem 1 in [23] , the solution  of minimizing (18) is
uniquely determined by

 � ��� � ��������� � ���� ��������� (19)
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By (5), (6), (7), (8), (9), and (10) we get the following after some
simple algebraic calculation.

 � � ��!

This completes the proof.

Remark 1: The proposed scheme happens to be same with the so-
called “conditioning” technique [17]. However the design objective
of the proposed scheme is quite different from the conditioning
technique.

Remark 2: Here we adopted a static compensation method in [23]
and designed an anti-windup compensator for nominal system,
i.e. given values of � and �. However, there is also a dynamic
compensation method proposed by Park and Choi [24] [25] [26].
The deployment of the dynamic compensation method will be future
work.

Remark 3: While designing the anti-windup compensator, we
did not consider the delay in the control input. Consequently the
performance of the proposed scheme will degrades in the presence
of the delay. The consideration of the delay will also be future work.

Now consider the stability of the proposed scheme. Here we ad-
dress the total–stability of the system [27].

Theorem 2. The overall system is totally stable under Assump-
tions (A1) and (A2).
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Figure 4: Experiment I; PI control

Proof. Suppose the overall system satisfy Assumptions (A1) and
(A2). Then, from Theorem 2 in [23] the overall system is stable if
� � � is Hurwitz. With the TCP/AQM system � � � �
��� �� where �� and �� are positive constants. This completes the
proof.

IV. SIMULATIONS

A. Experiment I

In the first experiment, we evaluate the performance of recovery from
an empty queue size. Because of the bursty nature of TCP flows, the
flows can suddenly change from zero to maximum link capacity. This
fluctuation is modeled by square waves of TCP flows. The number
of TCP connections is 500, and these connections are alternatively on
and off for 40 sec and 20 sec, respectively.

Figure 4 shows the result of the conventional PI control. Because
TCP flows begin at t = 20 sec., there is no incoming packet in the
router during the first 20 sec. Because the target queue size is 400
packets as given in Table I, and this queue size error makes the output
of the PI controller become a large negative value during the first 20
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Figure 5: Experiment I; PI control with the proposed anti-
windup compensator

sec. As shown in Figure 4 (b), the controller output decreases linearly
before the TCP flows begin, while the drop probability is limited to
zero. After the flows begin at t = 20 sec., the controller output still
remains negative for about another 20 seconds, and consequently the
drop probability remains zero until about t = 40 sec. This results in a
buffer overflow.

When we apply the proposed scheme to the PI controller, we can
prevent the integral term from increasing during saturation period.
Before TCP flows begin at t = 20 sec, the controller output is bounded
above -0.6 as we can see in Figure 5 (b). The proposed anti-windup
compensator helps the PI controller operate in the linear region af-
ter the underflow finishes. The anti-windup algorithm yields a short
settling time at the cost of producing an overshoot of the queue size.

The experiment shows that a low TCP flow induces inevitable
queue size error in the input of the PI controller, and this results in
buffer overflow. This buffer overflow can be avoided by using an anti-
windup method. The proposed scheme shows fast recovery from the
empty queue size with the overshoot of queue size. In the following
experiment, we will evaluate the effect of the slow response on the
performance of AQM.
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Figure 6: Experiment II; PI control

B. Experiment II

In the second experiment, we dynamically increase the number of
active TCP connections by 100 after each 10-second interval. The
number of connections is increased from 100 to 1000.

Figure 6 is the result of the conventional PI controller. The con-
troller waits for the queue size to be higher than the target queue size
with the drop probability being zero. When the queue size surpasses
the target queue size, the controller tries to reduce the incoming rate
by dropping or marking the incoming packets. Because the incom-
ing rate is not high enough, the initial packet drop, whose probability
is proportional to the queue size error, results in the empty buffer
for about 1.5 seconds. After the under-utilization, the controller pro-
duces a large overshoot. The PI controller with the anti-windup com-
pensator produces no overshoot after the initial under-utilization as
shown in Figure 7. The experiment shows that PI controller with the
proposed scheme performs better than the conventional PI controller.

V. CONCLUSION

The conventional PI controller outperforms RED significantly. How-
ever, the drop probability is limited between 0 and 1, and this can de-
grade the performance of the conventional PI controller. To resolve
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Figure 7: Experiment II; PI control with the proposed anti-
windup compensator

this problem, we have modeled AQM as a system with a saturating
actuator and have applied an anti-windup scheme.

We compared the proposed scheme with the conventional PI con-
troller via simulations using an ns-2 network simulator. The simula-
tion results show that our proposed controller performs better than the
PI controller. Here we adopted a static anti-windup scheme in [23]
for simple implementation. A more advanced scheme, i.e. a dynamic
compensation method was also proposed in [24][25][26]. We will ap-
ply this dynamic compensation method as an extension of this work.
Also we ignored the delay in the control input for simplification. The
delay in TCP network is crucial and we will also consider the delay
for better perfromance. These remain as future work.
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