A Parallel Identification Protocol for RFID Systems

Linghe Kong, Liang He , Yu Gu , Min-You Wu , Tian He

Existing approach

- Sequential identification
 - Not suitable for large-scale RFID systems
- Parallel identification
 - CDMA
 - SDMA
 - FDMA
 - Buzz

CDMA

• Tags need to multiply their IDs with a pseudorandom noise before transmission

Additional identification delay

Buzz

- Tags' responses are formatted into customized patterns
- Resolve collisions with compressive sensing
- Reader must accurately differentiate the signal strength
- Beyond the hardware requirement of current off-theshelf RFID readers

Parallel Identification Protocol(PIP)

Less identification delay

Compatible with current off-the-shelf RFID devices

Orthogonal to SDMA and FDMA

Scenario

- Single reader
 - Relatively powerful computation capability
 - Relatively powerful storage capability
- A number of tags
 - Each one has a bit string(64-512bits)
 - Partial bits construct the unique tag ID
 - m denotes #tags
 - n denotes #interrogated tags

An example

• m = 10 IDs which are {1, 2, 3, 4,, 10}

• n = 3 interrogated tags {7, 8, 10}

Flow chart of PIP

Fig. 4. Flow chart of parallel identification protocol.

Initialization

TABLE I

LIST OF THE MAPPING AND ENCODING RESULTS OF m = 10 TAGS BY RANDOMIZED MAPPING SCHEME AND *L-K* CODE WHEN SETTING L = 5, K = 2, NUM OF SEGMENTS = 2

1-st segment		2-nd segment	
ID mapping	ID encoding	ID mapping	ID encoding
$1 \rightarrow 1$	$\rightarrow 11000$	$1 \rightarrow 5$	$\rightarrow 01100$
$2 \rightarrow 2$	$\rightarrow 10100$	$2 \rightarrow 8$	$\rightarrow 00110$
$3 \rightarrow 3$	$\rightarrow 10010$	$3 \rightarrow 1$	$\rightarrow 11000$
$4 \rightarrow 4$	$\rightarrow 10001$	$4 \rightarrow 4$	$\rightarrow 10001$
$5 \rightarrow 5$	$\rightarrow 01100$	$5 \rightarrow 7$	$\rightarrow 01001$
$6 \rightarrow 6$	$\rightarrow 01010$	$6 \rightarrow 10$	$\rightarrow 00011$
$7 \rightarrow 7$	$\rightarrow 01001$	$7 \rightarrow 3$	$\rightarrow 10010$
$8 \rightarrow 8$	$\rightarrow 00110$	$8 \rightarrow 6$	$\rightarrow 01010$
$9 \rightarrow 9$	$\rightarrow 00101$	$9 \rightarrow 9$	$\rightarrow 00101$
$10 \rightarrow 10$	$\rightarrow 00011$	$10 \rightarrow 2$	$\rightarrow 10100$

Response

Fig. 2. The received bits are collided by concurrent responses of three tags.

Resolution

Fig. 3. Three tags {7,8,10} are resolved from the received bits.

Resolution

Fig. 3. Three tags {7,8,10} are resolved from the received bits.

Confirmation

Fig. 5. Three tags {7,8,10} are confirmed.

• How to compute L, K and r ?

• How dose the table be worked out?

• How to compute L, K and r ?

• How dose the table be worked out?

Optimal <L, K, r>

- Objective
 - Shortest identification time
 - min(L * r)
- L : length of bit string
- K : #'1's in bit string
- r: # segments of bit strings

Range of feasible L

$L \in \left[\min\{L \mid \binom{L}{\lfloor L/2 \rfloor} \geqslant m\}, \quad m\right].$

K should be as small as possible

The number of segments

$$F(r) = (m-n) \left(\frac{C-n}{m-n}\right)^r.$$

$$\min\{r \mid F(r) < \epsilon\},\$$

- F(r) : #false IDs
- ε : a small constant

• How to compute L, K and r ?

• How dose the table be worked out?

Randomized mapping scheme

$$I(i) = \begin{cases} I & i = 1, \\ (I \times S_{i-1} + i - 1)\% m + 1 & i \ge 2, \end{cases}$$

- I : the tag ID
- I(i) : the mapping result of I for the ith segment
- S : set of mapping seed. Sequence of sorted integers which are relatively prime to m.

Evaluation

Fig. 6. Comparison on four protocols when m varying and n = 100.

Evaluation

Fig. 7. Comparison on four protocols when n varying and m = 10000.